Collective cell movement promotes synchronization of coupled genetic oscillators.

نویسندگان

  • Koichiro Uriu
  • Luis G Morelli
چکیده

Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization of coupled nonidentical genetic oscillators.

The study of the collective dynamics of synchronization among genetic oscillators is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. Genetic oscillators are biochemical networks, which can generally be modelled as nonlinear dynamic systems. We show in this paper that many genetic oscillators can be transformed into Lur'e form ...

متن کامل

Synchronization in large directed networks of coupled phase oscillators.

We study the emergence of collective synchronization in large directed networks of heterogeneous oscillators by generalizing the classical Kuramoto model of globally coupled phase oscillators to more realistic networks. We extend recent theoretical approximations describing the transition to synchronization in large undirected networks of coupled phase oscillators to the case of directed networ...

متن کامل

Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions.

Cell movement and intercellular signaling occur simultaneously during the development of tissues, but little is known about how movement affects signaling. Previous theoretical studies have shown that faster moving cells favor synchronization across a population of locally coupled genetic oscillators. An important assumption in these studies is that cells can immediately interact with their new...

متن کامل

ierarchical synchronization in complex networks ith heterogeneous degrees

We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior w...

متن کامل

Noise-induced synchronization of a large population of globally coupled nonidentical oscillators.

We study a large population of globally coupled phase oscillators subject to common white Gaussian noise and find analytically that the critical coupling strength between oscillators for synchronization transition decreases with an increase in the intensity of common noise. Thus, common noise promotes the onset of synchronization. Our prediction is confirmed by numerical simulations of the phas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 107 2  شماره 

صفحات  -

تاریخ انتشار 2014